Exploring Imaging Methods for In Situ Measurements of the Visual Appearance of Snow
Abstract
:1. Introduction
2. Methods
2.1. Sparkle of Snow
2.2. Absorption and Scattering of Snow
2.3. Field Acquisition Campaign
3. Analysis and Discussion
3.1. Study of Sparkle
3.2. Study of Absorption and Scattering Coefficients
4. Conclusions
5. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohren, C.F. Colors of snow, frozen waterfalls, and icebergs. J. Opt. Soc. Am. 1983, 73, 1646–1652. [Google Scholar] [CrossRef]
- Varsa, P.M.; Baranoski, G.V.G. Rendering the Bluish Appearance of Snow: When Light Transmission Matters. IEEE Comput. Graph. Appl. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Flanner, M.G.; Zender, C.S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. Atmos. 2006, 111, 320. [Google Scholar] [CrossRef]
- Aoki, T.; Kuchiki, K.; Niwano, M.; Kodama, Y.; Hosaka, M.; Tanaka, T. Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res. Atmos. 2011, 116, 140. [Google Scholar] [CrossRef]
- Pointer, M.R. Measuring Visual Appearance—A Framework of the Future; Project 2.3 Measurement of Appearance; NPL Report COAM 19; National Physical Laboratory: London, UK, 2003. [Google Scholar]
- Fierz, C.; Armstrong, R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov, S.A. The International Classification of Seasonal Snow on the Ground; UNESCO-IHP Technical Report; UNESCO: Paris, France, 2009. [Google Scholar]
- Kokhanovsky, A.A.; Zege, E.P. Scattering optics of snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, U. Snow Crystals: Natural and Artificial; Harvard University Press: Cambridge, MA, USA, 1954. [Google Scholar] [CrossRef]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. Atmos. 2004, 109, 97. [Google Scholar] [CrossRef]
- Pirazzini, R.; Räisänen, P.; Vihma, T.; Johansson, M.; Tastula, E.M. Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet. Cryosphere 2015, 9, 2357–2381. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Breon, F.M. Validation of an Analytical Snow BRDF Model Using PARASOL Multi-Angular and Multispectral Observations. IEEE Geosci. Remote Sens. Lett. 2012, 9, 928–932. [Google Scholar] [CrossRef]
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; Von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European in-situ snow measurements: Practices and purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef]
- Frisvad, J.R.; Jensen, S.A.; Madsen, J.S.; Correia, A.; Yang, L.; Gregersen, S.K.S.; Meuret, Y.; Hansen, P.E. Survey of Models for Acquiring the Optical Properties of Translucent Materials. Comput. Graph. Forum 2020, 39, 729–755. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Radiative Transfer; Dover Publications: New York, NY, USA, 2013. [Google Scholar]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; National Bureau of Standards: Gaithersburg, MD, USA, 1977. [Google Scholar]
- Guarnera, G.C.; Ghosh, A.; Hall, I.; Glencross, M.; Guarnera, D. Material Capture and Representation with Applications in Virtual Reality. In Proceedings of the ACM SIGGRAPH 2017 Courses, Association for Computing Machinery (SIGGRAPH ’17), Los Angeles, CA, USA, 30 July–3 August 2017. [Google Scholar] [CrossRef]
- Wiscombe, W.J.; Warren, S.G. A Model for the Spectral Albedo of Snow. I: Pure Snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; France, J.L.; Arnaud, L.; Dumont, M.; Carmagnola, C.M.; King, M.D. Influence of grain shape on light penetration in snow. Cryosphere 2013, 7, 1803–1818. [Google Scholar] [CrossRef]
- Picard, G.; Arnaud, L.; Domine, F.; Fily, M. Determining snow specific surface area from near-infrared reflectance measurements: Numerical study of the influence of grain shape. Cold Reg. Sci. Technol. 2009, 56, 10–17. [Google Scholar] [CrossRef]
- Jensen, H.W.; Marschner, S.R.; Levoy, M.; Hanrahan, P. A Practical Model for Subsurface Light Transport. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Association for Computing Machinery (SIGGRAPH ’01), New York, NY, USA, 1 August 2001; pp. 511–518. [Google Scholar] [CrossRef]
- Donner, C.; Lawrence, J.; Ramamoorthi, R.; Hachisuka, T.; Jensen, H.W.; Nayar, S. An Empirical BSSRDF Model. ACM Trans. Graph. 2009, 28, 10. [Google Scholar] [CrossRef]
- Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 1984, 23, 1206–1225. [Google Scholar] [CrossRef] [PubMed]
- Picard, G.; Libois, Q.; Arnaud, L. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow. Cryosphere 2016, 10, 2655–2672. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113, 786. [Google Scholar] [CrossRef]
- Nguyen, M.; Thomas, J.B.; Farup, I. Measuring the Optical Properties of Highly Diffuse Materials. Sensors 2023, 23, 6853. [Google Scholar] [CrossRef]
- Kirchner, E.; van der Lans, I.; Perales, E.; Martínez-Verdú, F.; Campos, J.; Ferrero, A. Visibility of sparkle in metallic paints. J. Opt. Soc. Am. A 2015, 32, 921–927. [Google Scholar] [CrossRef]
- Nguyen, M.; Thomas, J.B.; Farup, I. Statistical Analysis of Sparkle in Snow Images. J. Imaging Sci. Technol. 2022, 66, 050404. [Google Scholar] [CrossRef]
- Ferrero, A.; Bayón, S. The measurement of sparkle. Metrologia 2015, 52, 317. [Google Scholar] [CrossRef]
- Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C. Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments. Cryosphere 2016, 10, 2013–2026. [Google Scholar] [CrossRef]
- Nguyen, M.; Thomas, J.B.; Farup, I. Investigating the Kokhanovsky snow reflectance model in close range spectral imaging. In Proceedings of the 29th Color and Imaging Conference (CIC 2021), Online, 1–15 November 2021; pp. 31–36. [Google Scholar] [CrossRef]
- Montpetit, B.; Royer, A.; Langlois, A.; Chum, M.; Cliche, P.; Roy, A.; Champollion, N.; Picard, G.; Dominé, F.; Obbard, R. In-situ Measurements for Snow Grain Size and Shape Characterization Using Optical Methods. In Proceedings of the 68th Annual Eastern Snow Conference, Montreal, QC, Canada, 14–16 June 2011; pp. 173–188. [Google Scholar]
- Farrell, T.J.; Patterson, M.S.; Wilson, B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 1992, 19, 879–888. [Google Scholar] [CrossRef]
- Website Tracking Temperatures in Norway. Available online: https://www.yr.no/en (accessed on 22 January 2024).
- Leppänen, L.; Kontu, A.; Vehviläinen, J.; Lemmetyinen, J.; Pulliainen, J. Comparison of traditional and optical grain-size field measurements with SNOWPACK simulations in a taiga snowpack. J. Glaciol. 2015, 61, 151–162. [Google Scholar] [CrossRef]
- Jakob, W.; Speierer, S.; Roussel, N.; Nimier-David, M.; Vicini, D.; Zeltner, T.; Nicolet, B.; Crespo, M.; Leroy, V.; Zhang, Z. Mitsuba 3 Renderer. 2022. Available online: https://mitsuba-renderer.org (accessed on 22 January 2024).
- Jakob, W.; Hašan, M.; Yan, L.Q.; Lawrence, J.; Ramamoorthi, R.; Marschner, S. Discrete Stochastic Microfacet Models. ACM Trans. Graph. 2014, 33, 115. [Google Scholar] [CrossRef]
- Wang, B.; Bowles, H. A Robust and Flexible Real-Time Sparkle Effect. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, Dublin, Ireland, 22–24 June 2016; Eurographics Association: Goslar, Germany, 2016; pp. 49–54. [Google Scholar]
- Martin, J.; Schneebeli, M. Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube. Cryosphere 2023, 17, 1723–1734. [Google Scholar] [CrossRef]
Day | 1 | 5 | 6 | 12 |
---|---|---|---|---|
Label | D | D | D | F |
(mm) | 50/65/300 | 50/60/300 | 55/70/300 | 50/300 |
Day | 13 | 15 | 17 | 19 |
Label | F | F | D | D |
(mm) | 50/65/300 | - | - | 55/300 |
Day | 20 | 21 | 22 | 23 |
Label | D | D | D | D |
(mm) | 60/70/85/300 | 60/70/300 | - | - |
Day | 26 | 27 | 29 | 30 |
Label | D | D | O | O |
(mm) | 60/70/92/300 | 55/60/65/300 | 50/70/300 | 55/60/300 |
Day | 34 | 35 | 43 | |
Label | F | F | O | |
(mm) | - | 50/65/30 | 65/70/300 |
Set | Contrast | Density (mm−2) | ||
---|---|---|---|---|
Mean | Std | Mean | Std | |
1 | 1.3368 | 0.0687 | 0.0619 | 0.0022 |
2 | 1.0300 | 0.0425 | 0.5436 | 0.2365 |
3 | 1.2082 | 0.0337 | 0.0803 | 0.0028 |
4 | 1.4551 | 1.1278 | 0.1914 | 0.0905 |
5 | 1.2735 | 0.0472 | 0.1229 | 0.0021 |
6 | 1.0043 | 0.0068 | 0.0211 | 0.0108 |
7 | 1.0021 | 0.0051 | 0.3169 | 0.1376 |
Day | (mm−1) | ||
---|---|---|---|
R | G | B | |
12 | 1.74 | 2.07 | 1.50 |
13 | 3.06 | 2.95 | 4.30 |
15 | 1.10 | 2.06 | 2.52 |
17 | 5.99 | 7.94 | 2.26 |
19 | 6.81 | 4.30 | 4.50 |
20 | 6.54 | 7.20 | 6.57 |
21 | 2.69 | 3.35 | 3.88 |
22 | 8.90 | 9.88 | 2.90 |
23 | 1.30 | 2.36 | 2.20 |
26 | 2.66 | 3.00 | 4.56 |
27 | 1.72 | 1.20 | 5.50 |
29 | 1.72 | 1.91 | 2.22 |
30 | 9.20 | 1.40 | 9.09 |
34 | 1.30 | 5.10 | 1.30 |
Day | Method 1 (mm−1) | Method 2 (mm−1) | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
12 | 0.5153 | 0.5330 | 0.5182 | 0.4991 | 0.5186 | 0.5014 |
13 | 0.4641 | 0.4830 | 0.4547 | 0.4443 | 0.4612 | 0.4446 |
15 | 0.5058 | 0.5205 | 0.5106 | 0.4912 | 0.5057 | 0.4955 |
17 | 0.5134 | 0.5486 | 0.5254 | 0.4946 | 0.5305 | 0.5095 |
19 | 0.4142 | 0.4361 | 0.4186 | 0.4008 | 0.4208 | 0.4048 |
20 | 0.4659 | 0.4965 | 0.4721 | 0.4496 | 0.4784 | 0.4569 |
21 | 0.5038 | 0.5341 | 0.5181 | 0.4800 | 0.5085 | 0.4935 |
22 | 0.4398 | 0.4741 | 0.4508 | 0.4195 | 0.4531 | 0.4344 |
23 | 0.2779 | 0.2763 | 0.2854 | 0.2520 | 0.2521 | 0.2625 |
26 | 0.2976 | 0.3106 | 0.3098 | 0.2777 | 0.2866 | 0.2901 |
27 | 0.3359 | 0.3535 | 0.3537 | 0.3180 | 0.3310 | 0.3348 |
29 | 0.4199 | 0.4606 | 0.4261 | 0.4004 | 0.4405 | 0.4096 |
30 | 0.3673 | 0.3868 | 0.3798 | 0.3496 | 0.3656 | 0.3617 |
34 | 0.4390 | 0.5556 | 0.4988 | 0.4407 | 0.5362 | 0.4861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.; Thomas, J.-B.; Farup, I. Exploring Imaging Methods for In Situ Measurements of the Visual Appearance of Snow. Geosciences 2024, 14, 35. https://doi.org/10.3390/geosciences14020035
Nguyen M, Thomas J-B, Farup I. Exploring Imaging Methods for In Situ Measurements of the Visual Appearance of Snow. Geosciences. 2024; 14(2):35. https://doi.org/10.3390/geosciences14020035
Chicago/Turabian StyleNguyen, Mathieu, Jean-Baptiste Thomas, and Ivar Farup. 2024. "Exploring Imaging Methods for In Situ Measurements of the Visual Appearance of Snow" Geosciences 14, no. 2: 35. https://doi.org/10.3390/geosciences14020035
APA StyleNguyen, M., Thomas, J. -B., & Farup, I. (2024). Exploring Imaging Methods for In Situ Measurements of the Visual Appearance of Snow. Geosciences, 14(2), 35. https://doi.org/10.3390/geosciences14020035