Abstract
Late Cretaceous dinosaur assemblages of North America—characterized by gigantic tyrannosaurid predators, and large-bodied herbivorous ceratopsids and hadrosaurids—were highly successful from around 80 million years ago (Ma) until the end of the ‘Age of Dinosaurs’ 66 Ma. However, the origin of these iconic faunas remains poorly understood because of a large, global sampling gap in the mid-Cretaceous, associated with an extreme sea-level rise. We describe the most complete skeleton of a predatory dinosaur from this gap, which belongs to a new tyrannosauroid theropod from the Middle Turonian (~92 Ma) of southern Laramidia (western North America). This taxon, Suskityrannus hazelae gen. et sp. nov., is a small-bodied species phylogenetically intermediate between the oldest, smallest tyrannosauroids and the gigantic, last-surviving tyrannosaurids. The species already possesses many key features of the tyrannosaurid bauplan, including the phylogenetically earliest record of an arctometatarsalian foot in tyrannosauroids, indicating that the group developed enhanced cursorial abilities at a small body size. Suskityrannus is part of a transitional Moreno Hill (that is, Zuni) dinosaur assemblage that includes dinosaur groups that became rare or were completely absent in North America around the final 15 Myr of the North American Cretaceous before the end-Cretaceous mass extinction, as well as small-bodied forebears of the large-bodied clades that dominated at this time.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are provided in the Supplementary Information and Supplementary Data 1–3. High-quality images of the histology sections are available on Morphobank (project number 3298; permalink: http://morphobank.org/permalink/?P3298). Reconstructed computed tomography slices (in .tiff stack format) are available for the holotype skull (MSM P4754) at https://doi.org/10.17602/M2/M68107. Data have been deposited in ZooBank under Life Science Identifier urn:lsid:zoobank.org:act:7A2A304F-66E9-4788-BAFC-1FBFD17ED47A (for the new genus and species).
References
Russell, L. S. Upper Cretaceous dinosaur faunas of North America. Proc. Am. Phil. Soc. 69, 133–159 (1930).
Weishampel, D. et al. in The Dinosauria (eds Weishampel, D. B., Dodson, P. & Osmólska, H.) 517–606 (Univ. California Press, 2004).
Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).
Renne, P. R. et al. Time scales of critical events around the Cretaceous–Paleogene boundary. Science 339, 684–687 (2013).
Benson, R. B. et al. Cretaceous tetrapod fossil record sampling and faunal turnover: implications for biogeography and the rise of modern clades. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372, 88–107 (2013).
Fastovsky, D. E. et al. Shape of Mesozoic dinosaur richness. Geology 32, 877–880 (2004).
Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).
Archibald, J. D. et al. in Lower to Middle Cretaceous Terrestrial Ecosystems Vol. 14 (eds Lucas, S. G., Kirkland, J. I. & Estep, J. W.) 21–28 (1998).
Averianov, A. & Sues, H.-D. Skeletal remains of Tyrannosauroidea (Dinosauria: Theropoda) from the Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan. Cretac. Res. 34, 284–297 (2012).
Sues, H.-D. & Averianov, A. Turanoceratops tardabilis—the first ceratopsid dinosaur from Asia. Naturwissenschaften 96, 645–652 (2009).
Kirkland, J. I. & Wolfe, D. G. First definitive therizinosaurid (Dinosauria; Theropoda) from North America. J. Vert. Paleontol. 21, 410–414 (2001).
Mcdonald, A. T., Wolfe, D. G. & Kirkland, J. I. A new basal hadrosauroid (Dinosauria: Ornithopoda) from the Turonian of New Mexico. J. Vert. Paleontol. 30, 799–812 (2010).
Wolfe, D. G. & Kirkland, J. I. Zuniceratops christopheri n.gen. & n.sp., a ceratopsian dinosaur from the Moreno Hill Formation (Cretaceous, Turonian) of west-central New Mexico. Bull. N. Mexico Mus. Nat. Hist. Sci. 14, 303–317 (1998).
Padian, K. & May, C. L. The earliest dinosaurs. Bull. N. Mexico Mus. Nat. Hist. Sci. 3, 379–381 (1993).
Gauthier, J. A. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55 (1986).
Von Huene, F. Das natürliche system der Saurischia. Zentralbl. Min. Geol. Pal. B 1914, 154–158 (1914).
Sereno, P. C. et al. Tyrannosaurid skeletal design first evolved at small body size. Science 326, 418–422 (2009).
Osborn, H. F. Tyrannosaurus and other Cretaceous carnivorous dinosaurs. Bull. Am. Mus. Nat. Hist. 21, 259–265 (1905).
Holtz Jr, T. R. in The Dinosauria 2nd edn (eds Weishampel, D. B., Dodson, P. & Osmolska, H.) 111–136 (Univ. California Press, 2004).
Molenaar, C. M. et al. Regional stratigraphic cross section of Cretaceous rocks from east-central Arizona to the Oklahoma Panhandle Miscellaneous Field Studies Map MF-2382 (US Geological Survey, 2002).
Hone, D. W., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: what, if anything, is an adult dinosaur? Biol. Lett. 12, 20150947 (2016).
Irmis, R. B. Axial skeleton ontogeny in the Parasuchia (Archosauria: Pseudosuchia) and its implications for ontogenetic determination in archosaurs. J. Vert. Paleontol. 27, 350–361 (2007).
Brochu, C. A. Closure of neurocentral sutures during crocodilian ontogeny: implications for maturity assessment in fossil archosaurs. J. Vert. Paleontol. 16, 49–62 (1996).
Fowler, D. W., Woodward, H. N., Freedman, E. A., Larson, P. L. & Horner, J. R. Reanalysis of “Raptorex kriegsteini”: a juvenile tyrannosaurid dinosaur from Mongolia. PLoS ONE 6, e21376 (2011).
Tsuihiji, T. et al. Cranial osteology of a juvenile specimen of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of Bugin Tsav, Mongolia. J. Vert. Paleontol. 31, 497–517 (2011).
Erickson, G. M. et al. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE 4, e7390 (2009).
Xu, X. et al. A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature 439, 715–718 (2006).
Currie, P. J., Hurum, J. H. & Sabath, K. Skull structure and evolution in tyrannosaurid dinosaurs. Acta Palaeontol. Pol. 48, 227–234 (2003).
Xu, X. et al. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature 431, 680–684 (2004).
Carr, T. D. & Williamson, T. E. Bistahieversor sealeyi, gen. et sp. nov., a new tyrannosauroid from New Mexico and the origin of deep snouts in Tyrannosauroidea. J. Vert. Paleontol. 30, 1–16 (2010).
Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur–bird transition. Curr. Biol. 24, 2386–2392 (2014).
Xu, X. et al. A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484, 92–95 (2012).
Brusatte, S. L. et al. Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science 329, 1481–1485 (2010).
Brusatte, S. L., Carr, T. D. & Norell, M. A. The osteology of Alioramus, a gracile and long-snouted tyrannosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Mongolia. Bull. Am. Mus. Nat. Hist. 366, 1–197 (2012).
Brusatte, S. L., Averianov, A., Sues, H. D., Muir, A. & Butler, I. B. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs. Proc. Natl Acad. Sci. USA 113, 2447–2452 (2016).
Rauhut, O. W., Milner, A. C. & Moore-Fay, S. Cranial osteology and phylogenetic position of the theropod dinosaur Proceratosaurus bradleyi (Woodward, 1910) from the Middle Jurassic of England. Zoo. J. Linnean Soc. 158, 155–195 (2010).
Holtz, T. R. Jr The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). J. Vert. Paleontol. 14, 480–519 (1995).
Brusatte, S. L. & Carr, T. D. The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Sci. Rep. 6, 20252 (2016).
Loewen, M. A., Irmis, R. B., Sertich, J. J., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS ONE 8, e79420 (2013).
Hutt, S., Naish, D., Martill, D. M., Barker, M. J. & Newbery, P. A preliminary account of a new tyrannosauroid theropod from the Wessex Formation (Early Cretaceous) of southern England. Cretac. Res. 22, 227–242 (2001).
Li, D., Norell, M. A., Gao, K.-Q., Smith, N. D. & Makovicky, P. J. A longirostrine tyrannosauroid from the Early Cretaceous of China. Proc. R. Soc. Lond. B 277, 183–190 (2009).
Zanno, L. E. & Makovicky, P. J. On the earliest record of Cretaceous tyrannosauroids in western North America: implications for an Early Cretaceous Laurasian interchange event. Historical Biol. 23, 317–325 (2011).
Rylaarsdam, J. R., Varban, B. L., Plint, A. G., Buckley, L. G. & McCrea, R. T. Middle Turonian dinosaur paleoenvironments in the Upper Cretaceous Kaskapau Formation, northeast British Columbia. Can. J. Earth Sci. 43, 631–652 (2006).
Eaton, J. G. et al. Nonmarine extinction across the Cenomanian–Turonian boundary, southwestern Utah, with a comparison to the Cretaceous–Tertiary extinction event. Geol. Soc. Am. Bull. 109, 560–567 (1997).
Fiorillo, A. R. et al. An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska. Sci. Rep. 8, 11706 (2018).
Smith, J. A., Zanno, L. E. & Lockley, M. Large tetradactyl footprints in the Upper Cretaceous Hunter Canyon formation of western Colorado: ichnological evidence for therizinosaurids in the Campanian of North America? In Society of Vertebrate Paleontology 76th Annual Meeting 227 (Society of Vertebrate Paleontology, 2016).
Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).
Coddington, J. & Scharff, N. Problems with zero-length branches. Cladistics 10, 415–423 (1994).
Paleobiology Database (accessed 24 October 2018); https://paleobiodb.org
Acknowledgements
We thank M. Norell, T. Carr, N. Longrich, T. Holtz, D. Evans and P. Makovicky for discussion, and L. Zanno and G. McCullough for specimen numbers. We thank C. M. ‘Kay’ Molenaar for input on our stratigraphic interpretations. We thank C. Griffin and S. Werning for help imaging the histology slides, and M. Stocker for computed tomography scanning help. Field work was conducted under BLM permit MSM-8172-RS-1A (to D.G.W.). Preparation of the specimens was conducted by H. Bollan and P. Bollan (Grand Junction, Colorado). We thank B. Anderson for discovery and documentation of the holotype specimen. R. Gaston of Gaston Design provided study casts of the material to R.K.D., D.G.W. and J.I.K. This work was funded by the Discovery Channel (to J.I.K. and D.G.W.) and the Department of Geosciences at Virginia Tech (to S.J.N.). We specifically thank M. Harrington and the Pueblo of Zuni Tribal Council for discussion of the name Suskityrannus. The larger project—the ‘Zuni Basin Paleontology Project’, led by the Wolfe family—was supported by members of the Southwest Palaeontological Society, the Arizona Museum of Natural History and dozens of volunteers since 1996. We thank M. Hayden and S. Carney for UGS technical reviews.
Author information
Authors and Affiliations
Contributions
S.J.N., R.K.D., M.A.L. and S.L.B. designed the research project. S.J.N. and A.H.T. composed the figures. S.L.B. and M.A.L. conducted the phylogenetic analyses. S.J.N., R.K.D., M.A.L., S.L.B. and N.D.S. interpreted the anatomy. D.G.W., R.K.D. and J.I.K. oversaw the field work and geological analysis. J.I.K. oversaw preparation of the specimens. S.J.N., R.K.D., M.A.L., S.L.B., N.D.S., A.H.T., J.I.K., A.T.M. and D.G.W. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures, differential diagnosis, geology, supplementary description of localities, ontogenetic age assessment, measurements, phylogenetic results, Late Cretaceous diversity data, dinosaur assemblage members and supplementary references
Supplementary Data 1
TNT data matrix used for the phylogenetic analysis. Loewen tyrannosauroid phylogeny dataset with Suskityrannus
Supplementary Data 2
TNT data matrix used for the phylogenetic analysis. Brusatte and Carr 2016 tyrannosauroid phylogeny dataset with Suskityrannus
Supplementary Data 3
TNT data matrix used for the phylogenetic analysis. Brusatte et al. 2014 theropod dataset with Suskityrannus
Rights and permissions
About this article
Cite this article
Nesbitt, S.J., Denton, R.K., Loewen, M.A. et al. A mid-Cretaceous tyrannosauroid and the origin of North American end-Cretaceous dinosaur assemblages. Nat Ecol Evol 3, 892–899 (2019). https://doi.org/10.1038/s41559-019-0888-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-019-0888-0
This article is cited by
-
The first deep-snouted tyrannosaur from Upper Cretaceous Ganzhou City of southeastern China
Scientific Reports (2024)
-
A giant tyrannosaur from the Campanian–Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism
Scientific Reports (2024)
-
A large Megaraptoridae (Theropoda: Coelurosauria) from Upper Cretaceous (Maastrichtian) of Patagonia, Argentina
Scientific Reports (2022)
-
The developing bird pelvis passes through ancestral dinosaurian conditions
Nature (2022)