Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continental breakup and the ordinal diversification of birds and mammals

Abstract

THE classical hypothesis for the diversification of birds and mammals proposes that most of the orders diverged rapidly in adaptive radiations after the Cretaceous/Tertiary (K/T) extinction event 65 million years ago1–3. Evidence is provided by the near-absence of fossils representing modern orders before the K/T boundary4,5. However, fossil-based estimates of divergence time are known to be conservative because of sampling biases6, and some molecular/time estimates point to earlier divergences among orders7–10. In an attempt to resolve this controversy, we have estimated times of divergence among avian and mammalian orders with a comprehensive set of genes that exhibit a constant rate of substitution. Here we report molecular estimates of divergence times that average about 50–90% earlier than those predicted by the classical hypothesis, and show that the timing of these divergences coincides with the Mesozoic fragmentation of emergent land areas. This suggests that continental breakup may have been an important mechanism in the ordinal diversification of birds and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Romer, A. S. Vertebrate Paleontology (Univ. Chicago Press, 1966).

    Google Scholar 

  2. Strickberger, M. W. Evolution (Jones and Bartlett, Boston, MA, 1995).

    Google Scholar 

  3. Feduccia, A. Science 267, 637–638 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Benton, M. J. (ed.) The Fossil Record Vol. 2 (Chapman and Hall, New York, 1993).

  5. Chiappe, L. M. Nature 378, 349–355 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Martin, R. D. Nature 363, 223–234 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Prager, E. M., Brush, A. H., Nolan, R. A., Nakanishi, M. & Wilson, A. C. J. molec. Evol. 3, 243–262 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Li, W.-H., Gouy, M., Sharp, P. M., O'Huigin, C. & Yang, Y.-W. Proc. natn. Acad. Sci. U.S.A. 87, 6703–6707 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Easteal, S., Collet, C. & Betty, D. The Mammalian Molecular Clock (Landes, Austin, TX, 1995).

    Google Scholar 

  10. Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A. & Pääbo, S. Genetics 137, 243–256 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smithson, T. R. Nature 342, 676–678 (1989).

    Article  ADS  Google Scholar 

  12. Ahlberg, P. E. & Milner, A. R. Nature 368, 507–514 (1994).

    Article  ADS  Google Scholar 

  13. Hallam, A. An Outline of Phanerozoic Biogeography (Oxford Univ. Press, 1994).

    Google Scholar 

  14. Padian, K. & Clemens, W. A. in Phanerozoic Diversity Patterns (ed. Valentine, J. W.) 41–96 (Princeton Univ. Press, NJ, 1985).

    Google Scholar 

  15. Zug, G. R. Herpetology (Academic, San Diego, CA, 1993).

    Google Scholar 

  16. Russell, D. A. Hist Biol. 10, 3–12 (1995).

    Article  Google Scholar 

  17. Hay, J. M., Ruvinsky, I., Hedges, S. B. & Maxson, L. R. Molec. Biol. Evol. 12, 928–937 (1995).

    CAS  PubMed  Google Scholar 

  18. Duret, L., Mouehiroud, D. & Gouy, M. Nucleic Acids Res. 22, 2360–2365 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Novacek, M. Nature 356, 121–125 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Higgins, D. G., Bleasby, A. J. & Fuchs, R. Comput. Appl. Biosci. 8, 189–191 (1992).

    CAS  PubMed  Google Scholar 

  21. Kumar, S., Tamura, K. & Nei, M. Molecular Evolutionary Genetics Analysis version 1.01 (Pennsylvania State University, 1993).

    Google Scholar 

  22. Tajima, F. Genetics 135, 599–607 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ota, T. & Nei, M. J. molec. Evol. 38, 642–643 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Ramirez, V., Savoie, P. & Morais, R. J. molec. Evol. 37, 296–310 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Xu, X. & Àrnason, U. Gene 148, 357–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Takezaki, N., Rzhetsky, A. & Nei, M. Molec. Biol. Evol. 12, 823–833 (1995).

    CAS  PubMed  Google Scholar 

  27. Hedges, S. B. & Sibley, C. G. Proc. natn. Acad. Sci. U.S.A. 91, 9861–9865 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Felsenstein, J. Phylogenetic Inference Package (PHYLIP) Version 3.5, (University of Washington, Seattle, 1993).

    Google Scholar 

  29. Sibley, C. & Ahlquist, J. Phylogeny and Classification of Birds (Yale Univ. Press, New Haven, CT, 1990).

    Google Scholar 

  30. Smith, A. G., Smith, D. G. & Funnell, B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedges, S., Parker, P., Sibley, C. et al. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996). https://doi.org/10.1038/381226a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381226a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing